American vs European options

- European option gives right to buy/sell stock only on the exercise date T
 - If you don’t want to exercise this right, you don’t have to.
- American option gives the right to buy/sell stock on or before exercise date T

Notation

- C for call
 - Time subscript if necessary: C_0 or C_t
- P, P_0, P_t for put
- X or K for exercise price
 - Also called strike price
- S, S_0, S_t for stock price
- r for interest rate
- σ for standard deviation of stock return (more about this later)

Option buyers and option writers

- Options can be bought or sold
- Like long or short positions in stock or other assets
- **Call option buyer**
 - Pays money up front, gets money if call ends in the money, i.e. if $S_T - X > 0$
- **Call option writer/seller**
 - Gets money up front, pays money if call ends in the money, i.e. if $S_T - X > 0$
Why buy a call on a stock?

- Call right to buy the stock in future
- Spend $0.67 today, if the stock price goes up, you can still buy PG for $79 in 18 days.
- Today, PG is 78.53. Costs me $3 for the right to buy one share of PG on or before 17 Jan 2015 for $80.
 - Why? For $3 you get to bet (apostar) that the stock will go over $80 by 17 Jan 2015
 - You only make money if the stock actually goes over $83
- Another why? Instead of buying the stock today, you get to wait 9 months to buy the stock? DELAYED PURCHASE

Question

- What's worth more?
 - Right to buy PG in next 18 days for $80?
 - Right to buy PG in next 9 months for $80?
- Calls with longer expiration times are worth MORE
- PG January 2015 call with eXercise = $80
 - Costs $3 today
 - Between now and January 2015: Only has non-negative cash flow

PG X=$80 call, T = expiration = 17jan2015, C=cost = $3

- What happens if on 17jan2015, PG stock is worth $100?
 - You exercise the call option: Buy the stock for $80
 - Your immediate profit is $20 ($100 – $80)
 - Taking into account the price you paid, your net profit = $17
- What happens if on 17jan2015, PG stock is worth $150?
 - Your net profit = $67 = $70 - $3 = max[$S_T - X,0] - C
- What happens if on 17jan2015, PG stock is worth $60?
 - Will you use your right to buy the stock for $80? NO!
 - Immediate profit = max[ST - X,0] = 0
 - Net profit: max[ST - X,0] – C = -3

Puts on PG

- Put is the right to SELL a share of PG stock on or before 17Jan2015
- A PG X=$80 January2015 Put, selling today for $6.65
- If next January, PG has stock price of $100, will you want to exercise the put? MEANS: do you want to sell a share of PG for $80, if the stock price is $100? NO
 - Immediate profit in January from the Put? 0
 - Net profit: -6.65
- If, next January, PG has stock price of $50. Will you exercise the put? YES
 - Immediate profit = 30 = 80 – 50 = X – ST
 - Net profit: 30 – 6.65 = 23.35

Profit formula for calls and puts

- Profit on a call = max[ST - X,0] – C
- Profit on a put = max[X-ST,0] - P
Jaime asks

- January X=80 CALL has price today of $3
- January X=80 PUT has price today of $6.65
- Why?
 - Call is a bet that PG will go above $80 by January 2015
 - Put is a bet that PG will go below $80 by January 2015
- Why is the put more valuable than the call? Market thinks that chance of PG going above $80 less than the chance of going below $80.

Diana was asked

- Why does the X=35 PG January 2015 call have a higher price than the X=50 PG January call?
 - X=35 call gives you the right to buy the stock in January for 35
 - X=50 ______ right to buy stock in January for 50
 - Better to be able to buy the stock for 35 than to buy for 50
- Conclusion: As X ↑ call price ↓
- Conclusion: As X ↑ put price ↑

How to think about options

- Call is a bet that the stock price will go up in the future
- Call is a way to delay the purchase of stock
 - Instead of buying stock, buy the right to buy the stock in the future (the call)
- Put is a bet that the stock price will go down in the future
- Put is a way to delay the sale of stock
 - Instead of selling the stock, buy the right to sell the stock in the future (the put)

Option is a one-sided bet

- When you buy a call or put, you can
 - Make an unlimited amount of money in the future
 - You can only lose your original investment
- Finance is full of two-sided bets
 - Stocks: If price goes up/down by $10, you gain/lose $10
 - Futures contract: Contract to buy commodity in future for a given price. Losses/gains are symmetric

Really general property of calls

- The higher the exercise price, the lower the price of the call
 - Call with X = 40 is a bet that the stock price will be > 40 in the future
 - Call with X = 50 is a bet that the stock price will be > 50 in the future (less likely, hence less valuable)
Really general property of puts

- The higher the exercise price, the higher the price of the put
 - Put with $X = 40$ is a bet that the stock price will be < 40 in the future
 - Put with $X = 50$ is a bet that the stock price will be < 50 in the future (more likely, hence more valuable)

Really general property of calls and puts

- Longer-maturity puts and calls are more valuable
 - Call with $X = 40$ and maturity $T = 6$ months
 - Call with $X = 40$ and maturity $T = 1$ year
- Interpretation
 - More time to see stock price rise > 40
 - More time to delay purchase of stock

A more difficult property

- Options are only interesting when the underlying stock is risky.
 - Why place a bet on a non-risky asset?
 - If asset is not risky, everything is known
- The more risky the underlying asset, the more interesting the option.
- Because an option is a one-sided bet (you can’t lose more than you paid):

 The more risky the underlying stock, the more the option is worth.

Yahoo option information

<table>
<thead>
<tr>
<th>Stock</th>
<th>Strike</th>
<th>Type</th>
<th>Expiration</th>
<th>Option Price</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>XYZ</td>
<td>40</td>
<td>Call</td>
<td>17-Nov-12</td>
<td>20.00</td>
<td>1000</td>
</tr>
<tr>
<td>ABC</td>
<td>50</td>
<td>Put</td>
<td>17-Nov-12</td>
<td>15.00</td>
<td>2000</td>
</tr>
</tbody>
</table>

MUST ACTIVE OPTIONS, 22 OCTOBER 2012

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
<th>Option Expiration</th>
<th>Strike Price</th>
<th>Option Type</th>
<th>Open Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1000</td>
<td>17-Nov-12</td>
<td>100</td>
<td>Call</td>
<td>1000</td>
</tr>
<tr>
<td>Y</td>
<td>2000</td>
<td>17-Nov-12</td>
<td>150</td>
<td>Put</td>
<td>2000</td>
</tr>
</tbody>
</table>

In the money is white, out of money in yellow.
Importing data from Web into Excel

- **Data | From Web**
- Opens Microsoft Explorer: Got to URL
- Mark arrows of desired tables

Option profit patterns

- Popular sport! Graph payoffs for call option, put option, stock at exercise date T as function of stock price S_T
- Graph payoffs of combinations
 - Two calls with different exercise prices ("spread")
 - Three calls or puts with different exercise prices ("butterfly")

Stock profit pattern

- Make money on bought stock if price rises
- Make money on shorted stock if price falls

Call option profit pattern

- Call buyer’s profit $= \max(0, X - S_T - C)$
- $= \max(0, -50, 0) - 15$
- $= -15$ if $S_T \leq 50$
- $= (X - 50) - 15$ if $S_T > 50$

Put option profit pattern

- Put buyer’s profit $= \max(0, X - S_T + P)$
- $= \max(0, 50 - S_T - 10)$
- $= -10$ if $S_T \leq 50$
- $= 40 - S_T$ if $S_T > 50$
Protective put

- Buy stock today at price S_0
- But a put for P_0 with exercise price X
- Cost today:
 - $S_0 + P_0$
- Payoff at time T:
 - $S_T + \max(X - S_T, 0)$

Protective put payoff pattern looks like that of a call. Is it true that:
- $S_T + P_T = \text{Call}$
- Almost but not quite—see "Put-Call Parity" (later on)

Call spread

- Buy one call with exercise price X_{high}
- Write call with exercise price X_{low}
- Both with same time T to maturity
- Profit at T:
 - $-\max(S_T - X_{\text{high}}, 0) + \max(S_T - X_{\text{low}}, 0)$

Butterfly

- Combination of three puts or calls with different exercise prices (some long, some short)
- Total number of positions (short + long) adds to zero
Option arbitrage propositions

- Facts about option prices
- Derived without much/any assumptions about stochastic process of stock price
- Derived only from definitions

Arbitrage position 0

- Consider an American call costing C_0, with exercise price X, where the stock price is S_0. Then

 \[C_0 \text{ must be } > \text{Max}(S_0 - X, 0) \]

- Proof by example: Suppose $C_0 = 5$, $S_0 = 50$, and $X = 40$.

- **Make immediate profit**

 - Buy call: \(-5\)
 - Exercise immediately: \(-40\)
 - Sell stock immediately: \(+50\)

Arbitrage proposition 1

- Consider a European call costing C_p with exercise price X, where the stock price is S_p. Then
 \[C_p \text{ must be } > \text{Max}(S_p - PV(X), 0) \]

- Proposition 0 is trivial

Arbitrage proposition 2

- It is never optimal to early-exercise an American call written on a stock which doesn’t pay dividends before the option maturity T.

- Another interpretation: If you’re thinking about early-exercising a call:

 - SELL THE CALL, don’t exercise it
 - You’ll make more money
Proof by example of Prop. 2

- You own a call with 0.5 years to maturity.
 - Call exercise, $X=50$
 - Current stock price, $S=80$
 - Interest rate, $r = 6\%$

- Immediate early exercise:

 \[\text{Payoff} = S - X = 30 \]

- By Prop. 1, market price of call is at least
 \[\max(S - PV(X), 0) = \max(80 - (\exp^{-0.5 \times 6\%})50, 0) = 31.45 \]

- Better off selling the call than exercising

Conclusion from Prop. 2

- The American feature of calls is often worthless
- In many cases: American call and European call have same value
- Not true for puts: European put worth less than American put

Proposition 3: Put-call parity

- Consider a European put and call on the same stock. Put and call have same exercise price X. Stock pays no dividends before option exercise date T.

Then:

\[P_0 + S_0 = C_0 + PV(X) \]

where

- P_0 is the price of put plus stock
- S_0 is the price of call plus present value of exercise

Proposition 5: Call price convexity

- Consider three calls on same stock with same maturity T. Assume that Call1 has exercise price X_1, Call2 has X_2, Call3 has X_3.

- Assume $X_1 < X_2 < X_3$ and equally spaced: $X_2 = (X_1 + X_3)/2$.

Then

\[Call2 < \frac{Call1 + Call3}{2} \]

Proposition 5 example and counterexample

- Use butterfly spread previously illustrated
- When Proposition 5 condition is violated, there is an arbitrage opportunity.
- Violation of Prop. 5:

\[Call2 > \frac{Call1 + Call3}{2} \]

No arbitrage:

\[Call2 < \frac{Call1 + Call3}{2} \]

Sometimes you win, sometimes you lose.
Arbitrage: \(\text{Call2} \geq \frac{\text{Call1} + \text{Call3}}{2} \)

<table>
<thead>
<tr>
<th>Exercise Price</th>
<th>Call1</th>
<th>Call2</th>
<th>Call3</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROPOSITION 5 CONDITION VIOLATED